259 research outputs found

    Pneumatocele formation in a fatal adult pneumonia patient coinfected with Streptococcus pyogenes emm-type 3 and influenza A: a case report

    Get PDF
    Background: A pneumatocele is a transient thin-walled lesion and rare complication in adult pneumonia. A variety of infectious pathogens have been reported in children with pneumatoceles. We report the first case of adult pneumonia with pneumatocele formation that is likely caused by Streptococcus pyogenes and coinfection with influenza A virus. Case presentation: A 64-year-old Japanese man presented with a one-week history of fever, sore throat, and arthralgia. He was referred to our university hospital for respiratory distress. He required mechanical ventilation in the intensive care unit (ICU). Bacterial culture detected S. pyogenes in the bronchoscopic aspirates, which was not detected in blood. Although a rapid influenza antigen test was negative, an influenza A polymerase chain reaction (PCR) test was positive. Therefore, he was diagnosed with coinfection of influenza A and group A streptococcus (GAS) pneumonia complicated by probable streptococcal toxic shock syndrome. A chest radiograph on admission showed diffuse patchy opacification and consolidation in the bilateral lung fields. Multiple thin-walled cysts appeared in both middle lung fields on computed tomography (CT). On the following day, the bilateral cysts had turned into a mass-like opacity. The patient died despite intensive care. An autopsy was performed. The pathology investigation revealed multiple hematomas formed by bleeding in pneumatoceles. Conclusions: There have been no previous reports of a pneumatocele complicated by S. pyogenes in an adult patient coinfected with influenza A. Further molecular investigation revealed that the S. pyogenes isolate had the sequence type of emm3

    The Japanese Clinical Practice Guideline for acute kidney injury 2016

    Get PDF
    Acute kidney injury (AKI) is a syndrome which has a broad range of etiologic factors depending on different clinical settings. Because AKI has significant impacts on prognosis in any clinical settings, early detection and intervention are necessary to improve the outcomes of AKI patients. This clinical guideline for AKI was developed by a multidisciplinary approach with nephrology, intensive care medicine, blood purification, and pediatrics. Of note, clinical practice for AKI management which was widely performed in Japan was also evaluated with comprehensive literature search

    EGFR T790M Mutation as a Possible Target for Immunotherapy; Identification of HLA-A*0201-Restricted T Cell Epitopes Derived from the EGFR T790M Mutation

    Get PDF
    Treatment with epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs), such as gefitinib and erlotinib, has achieved high clinical response rates in patients with non–small cell lung cancers (NSCLCs). However, over time, most tumors develop acquired resistance to EGFR-TKIs, which is associated with the secondary EGFR T790M resistance mutation in about half the cases. Currently there are no effective treatment options for patients with this resistance mutation. Here we identified two novel HLA-A*0201 (A2)-restricted T cell epitopes containing the mutated methionine residue of the EGFR T790M mutation, T790M-5 (MQLMPFGCLL) and T790M-7 (LIMQLMPFGCL), as potential targets for EGFR-TKI-resistant patients. When peripheral blood cells were repeatedly stimulated in vitro with these two peptides and assessed by antigen-specific IFN-γ secretion, T cell lines responsive to T790M-5 and T790M-7 were established in 5 of 6 (83%) and 3 of 6 (50%) healthy donors, respectively. Additionally, the T790M-5- and T790M-7-specific T cell lines displayed an MHC class I-restricted reactivity against NSCLC cell lines expressing both HLA-A2 and the T790M mutation. Interestingly, the NSCLC patients with antigen-specific T cell responses to these epitopes showed a significantly less frequency of EGFR-T790M mutation than those without them [1 of 7 (14%) vs 9 of 15 (60%); chi-squared test, p = 0.0449], indicating the negative correlation between the immune responses to the EGFR-T790M-derived epitopes and the presence of EGFR-T790M mutation in NSCLC patients. This finding could possibly be explained by the hypothesis that immune responses to the mutated neo-antigens derived from T790M might prevent the emergence of tumor cell variants with the T790M resistance mutation in NSCLC patients during EGFR-TKI treatment. Together, our results suggest that the identified T cell epitopes might provide a novel immunotherapeutic approach for prevention and/or treatment of EGFR-TKI resistance with the secondary EGFR T790M resistance mutation in NSCLC patients
    corecore